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A mechanism for the destabilization of numerical algorithms for partial differential 
equations is suggested. The novelty of the work is that it attempts to explain the dynamical 
process by which noise can localize on a spatial grid and cause finite amplitude instability 
thresholds to be exceeded at distinct locations. 

I. INTRODUCTION AND GENERAL DISCUSSION 

The stability of partial difference equations which arise in the discretization of time 
dependent differential equations is well understood for linear problems with constant 
coefficients. Progress has also been made in studying linear, variable coefficient 
problems. However, once nonlinear terms are introduced into difference equations, 
there are few general statements which can be made and global results are available 
only for isolated cases [2,4,9]. Except for the pioneering work of Phillips [ 9 1, and 
Arakawa and his colleagues [ 1, 61, very little work has gone into analyzing the 
nature of instabilities in the way that fluid mechanicists investigate instabilities as 
they occur in the transition to turbulence. It is the goal of this paper to make such an 
investigation for a class of nonlinear finite difference equations which are typified by 
the leapfrog (second order) method applied to the quasi-linear equation 

u, + uu, = 0. 

What we find is a totally new and very subtle mechanism for the triggering of 
nonlinear instabilities. It is insidious and at first very slow to develop. As a certain 
threshold is reached, however, sudden outbursts of unbounded noise occur at various 
local positions in the spatial grid. The mechanism is dynamic in character and does 
not necessarily rely on large initial perturbations or on a large flow of energy into the 
high wave numbers. It makes its appearance in schemes which are energy conserving 
and neutrally stable over short time scales. It is a mechanism which is universal in 
character and closely related to the mechanisms responsible for the breakdown of 
monochromatic gravity waves on the sea surface, Langmuir turbulence in plasmas, 
and the intense laser beams seen in nonlinear dielectrics [IO]. Our goal is to 
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understand the nature of this mechanism and to develop from this understanding 
plausible criteria for the surgical application of various remedies which are necessary 
to suppress instability and sustain computations over long times. In particular we will 
discuss, in the context of the example used in this paper, ways in which one might 
judiciously choose the frequency at which one must apply these remedies. 

In order to develop a feeling for how this instability arises, we first recount the 
ideas on which nonlinear stability theory is usually based. It is natural to decompose 
the field u(m, n) (where t = mAt and x = ndx) into components IJ(m, n) and u’(m, n), 
where U(m, n), the approximation to the exact solution, changes slowly with respect 
to the grid length Ax and u’(m, n), the noise, consists of a small number N, of low 
period (high wavenumber) modes which are small integer multiples of the grid length. 
This sort of decomposition i,S chosen because (i) it is known that the potentially most 
unstable modes have wavelengths on the scale of the grid (often linear stability 
analysis can suggest which modes to include) and (ii) it is desirable to reduce the 
dimensionality of the problem from N, the number of grid points which is generally 
large, to N, which is much smaller. Use of this ansatz in the partial difference 
equations leads to a set of N, coupled, nonlinear, ordinary difference equations for 
the amplitudes of the N, modes which constitute u’(m, n). The background field 
u(m, n) appears as a coefficient which, because it is slowly varying, can be taken to 
be locally constant. Because the original equation is nonlinear, these N, amplitude 
equations do not close automatically, but are often derived through perturbation 
procedures as asymptotic approximations. In the case we shall examine, the 
amplitude equations do, in fact, close exactly because of the aliasing phenomenon. 
The nonlinear terms in the equations are quadratic and are due to both direct 
interactions of the form 

exp (i2nl,.$] exp(i2&.+) +exp(i2n(I,+i,)$], 

where I, t I, < N/2, and to “indirect” interactions which involve aliasing error [6, 9 1 
or (what crystal physicists would call) Umklapp processes in which a wavenumber 
I = 1, + I, > N/2 is misrepresented by the wavenumber 1= N - 1, - I, due to the 
inability of the grid to resolve wavelengths smaller than 2Ax. It is evident that the 
wavenumber sets (*N/4, *N/2} and (*N/6, *N/3, +N/2} are closed under 
quadratic interactions (e.g. N/4 + N/2 = 3N/4 = N - N/4). 

One can now solve the initial value problem for the ordinary difference equations 
and determine stability curves such as those given in Fig. la. Roughly speaking, the 
stability curve divides into two regions: the plane coordinatized by E, a measure of 
the initial energy in the noise, and a, a nondimensional stability parameter (e.g. 
UAt/Ax). In one region, solutions grow without bound (overflowing in 10-100 time 
steps), whereas, in the other region, solutions simply oscillate neutrally. 

This curve provides all of the information usually associated with nonlinear 
stability theory. If the stability curve intersects the a axis (E = 0) at a finite point 
a,(O), then the scheme is unstable to infinitesimal disturbances. We note that a,(O) 
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can be infinite, in which case the scheme is unconditionally stable in the linear sense. 
For a ( a,(O), a finite E can push the computation into the unstable region. We call 
this value for E(a) the critical threshold at a. This is the instability discovered, in the 
numerical context, by Phillips. However, in a carefully designed numerical scheme 
which inhibits the flow of energy from small to large wavenumbers, there is neither 
the source of large spontaneous or driven perturbations nor a process analogous to 
the role that imperfections play in destabilizing elastic shells, through which the 
critical threshold can be reached. The size and growth rate of roundoff error in 
numerical schemes is simply too small. Our aim is to show that there is indeed a 
mechanism, dynamic in character, by which the critical threshold can be attained 
locally without the benefit of large initial perturbations. 

This instability can be described as follows. The solutions of the ordinary 
difference equations which correspond to values of (a, E) in the neutrally stable 
region of Fig. la and which are exact solutions of the original partial difference 
equations are unstable. They are unstable to modes which are their immediate 
neighbors in wavenumber space. The instability, which results from the nonlinear 
interaction between the original modes and their sidebands, manifests itself as a 
distortion of the envelope of the noise. The exact solution will have a spatial period of 
the order of the grid length (4dx or 6Ax in our examples) depending on which set of 
N, modes is used. The envelope of the exact solution is constant in space and 
oscillates in time. In our experiment, the initial noise in the sideband modes triggering 
the instability is due to roundoff error. In real calculations, there would generally be 
some energy already in these modes. The instability mechanism itself is a noise 
amplifier. Its character (initial growth rate and wavelength) is independent of the size 

FIG. la. Stability curves in (a,E) plane as determined from amplitude equations: (2) two mode 
solution (n/2, n), (3) three mode solution (n/3, 2n/3, n), (4) f our mode solution (a/4, n/2, 37714, 7r). 
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of the grid and the degree of precision used in the calculations. Its wavelength is 
chosen dynamically as being the one of optimal growth. We understand the initial 
stages of this process. For the later stages, we have developed an envelope equation 
which appears to describe the subsequent growth reasonably well. The envelope 
begins to distort and slowly develops sharp peaks (focuses) at isolated points along 
the grid. When the local amplitude reaches the critical threshold given by Fig. la, the 
noise level accelerates dramatically and becomes unbounded within relatively few 
time steps. 

Thus the process by which the partial difference equation destabilizes is a twofold 
one. At first the noise level in the potentially unstable modes (introduced in real 
computations by nonlinear cascade) is not large. The noise begins to focus and, if the 
spatial grid is large enough, can eventually reach the critical threshold locally. 
Depending on the initial noise amplitude, this focusing process can take a long time 
(often on the order of 103-IO4 time steps) to develop. At this point, the conditions for 
nonlinear finite amplitude instability are satisfied and the noise grows without bound. 
The critical parameter in determining whether a partial difference equation is unstable 
is a combination of both noise level and grid size. In this sense, for large enough 
grids, the leapfrog method is always unstable! 

In summary then, we have provided an explanation for spatially local instabilities 
in locally neutrally stable schemes. To our knowledge, all other theories of nonlinear 
instability are global in that breakdown occurs uniformly throughout the spatial grid. 
One can, of course, inhibit the instability by attacking its source of life, namely, the 
energy in the small scales. Indeed, such remedies as (i) tiltering the high 
wavenumbers, (ii) using a finite difference scheme that impedes the energy cascade to 
the point where the stability curve is almost vertical so that no finite amplitude 
instability is present, (iii) averaging the solution at successive time intervals, and (iv) 
inserting a forward time step at prescribed intervals, will suppress or delay the 
appearance of the instability. However, these remedies may also have undesirable side 
effects. Although we have no precise algorithm, we will discuss ways in which these 
techniques (particnlarly (iv)) might be applied in order to suppress the instability and 
at the same time minimize extraneous side effects. 

The contents of the paper are as follows: In Section 2, we present the stability 
diagrams an which the discussion of nonlinear instability is usually based. Along the 
way we see, in the context of our example, the nonlinear instabilities described by 
Phillips and Kreiss and Oliger. In Section 3, we illustrate the instability of the 
solutions used in Wion 2 and display, through numerical experiments, the focusing 
property. We include careful experiments showing that this behavior is not simply 
due to lack of computational precision, but rather is a genuine instability whose 
initial growth rate is independent of the precision and the size of the grid. In Section 
4, we introduce an envelope equation as an attempt to give a universal equation 
which will describe the focusing process for a larger class of schemes. In the last 
section, we eliscuss some ideas about how to apply various remedies to inhibit 
instabihty and we advance some conjectures concerning the parameters on which the 
focusing property might depend. 
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II. DIFFERENCE SCHEME AND AMPLITUDE EQUATIONS 

We will presently consider the stability of a particular finite difference scheme 
applied to the nonlinear advection equation 

24, + uu, = 0, 

subject to periodic boundary conditions u(t, 0) = u(t, 1) and initial conditions 
~(0, x) =f(x). The stability of the constant solution a = U (V > 0) will be handled 
first. Perturbations u’ about the constant solution satisfy 

u; + (2.4’ + U) 24; = 0. 

We discretize the perturbation equation over a grid with time step k and space step 
h = l/N and let U(M, n) be the discrete approximation to the exact solution 
~‘(mk, nh). Using second order finite differences in x and t gives the set of difference 
equations 

ey u(m + 1, n) - u(m - 1, n) + ‘i- [u2(m, n + 1) - a+, n - 1)] 

+ [(l -e)yu(m,n)+a][u(m,n+ l)-u(m,n- I)]=0 

for O<n<N-- 1, m> 1; (2.1) 

u(m, 0) = 4m, N), 

where 19 E R, y = k/h, a = kU/h. The nonlinear term has been discretized in two 
different ways. It is not difficult to show that with f3= f the scheme satisfies the 
conservation properties that 

M= f u(m,n) 
N 

and E= 1 u(m+ l,n)u(m, n) (2.2) 
It=1 n=1 

are independent of m. In the calculations that follow, the choice 8 = $ will be used. In 
addition, we assume y = 1 (k = h) to eliminate one degree of freedom in parameter 
space. 

A brief look at the associated linear problem will be useful. The linear difference 
equations 

u(m + 1, n) - u(m - 1, n) + a[u(m, n + 1) - u(m, n - l)] = 0, O<n<N-1, 

have normal mode solutions of the form 

u,(m,n)-e (in 2pnlNl -im mi forO<p<n- 1, i= 1,2. 
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The frequencies 4, and dz are real and given by 

$,,2 = arctan 
i 

a sin (2p7r/N) 
f d/1 - a2 sin’(2prr/N) i ’ 

provided that a is less than the critical value 

a,* = (sin (2pz/N))-‘. 

The frequency 4, is associated with the physical mode and converges to the exact 
solution, while & belongs to a spurious or computational mode [6]. Note that af > 1 
and that if a < a,*, then mode p is neutral. However, if a > a$, then mode p grows 
exponentially in m (or time). The smallest critical value of a occurs for p = N/4, 
when a; = 1. This corresponds to the spatial mode einx”, which has a wavelength of 
4h. This is identified as the most unstable mode. With p = 0, the corresponding 
spatial mode einn has wavelength 2h and is neutrally stable for all a. Finally with 
a = 1, 4,,2 = 2pn/N, n- Ppn/N), one choice of which gives the dispersion relation of 
the continuous problem. 

We now turn to the full nonlinear difference equation (2.1) and look for exact 
solutions consisting of a superposition of linear modes. These sets of modes can be 
chosen by noting that each mode in the set must include its subharmonic which 
appears through the quadratic, nonlinear term. The resulting equations for the mode 
amplitudes are closed and therefore their solutions provide exact solutions of the 
original partial difference equation. The various sets of modes we consider are as 
follows: 

A. One Mode Solution 

A solution of the form 

u(m, n) = A(m) eCiZni3) n + (complex conjugate) (2.3) 

has a wavelength of 3h and an amplitude which depends only on time. Substitution of 
this solution into Eq. (2.1) gives an ordinary difference equation for the amplitude 

A(m+ 1)-A(m- 1)+iafiA(m)=ij/5/2y(2-38)A*2(m). 

This equation, for a = 0, B # $, contains the result of Fornberg [ 21 who noted that, in 
the continuous limit, iA behaves in time like (t, - t)-‘. It also includes the obser- 
vation of Kreiss and Oliger [4j that a spatial pattern u(m, 0) = u(m, 3) = 0 with 
u(m, l), u(m, 2) of opposite sign (that is, an e(i2R’3) ” solution) is unstable. To see this, 
simply take A(m) to be pure imaginary (A(m) = ia(m Then (2.3) gives 
u(m, 0) = u(m, 3) = 0, u(m, 1) = --u(m, 2) = - fl a(m), where a(m+ l)= 
a(m - 1) -a’(m). This pattern leads to unbounded growth and the choice 0= 3 is 
again advisable in order to suppress this fast acting instability. 
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B. Two Mode Solution 

In order to investigate the nonlinear behavior of the most unstable linear mode, we 
assume a solution of the form 

u(m, n) =A(m) eitn’*” + (*) + B(m) einn, BER, 

and obtain the exact amplitude equations 

A@+ l)--A(m- I)=-2iaA(m)-TA*(m)B(m), 

B(m+ 1)-B(m- l)=-$iy(A*(m)-A**(m)). 

(2.4) 

(2Sa) 

(2Sb) 

In order to recover the linear stability result, it is useful to include (thinking of a as 
close to one) the linear (fast) time response in the exponential by setting 

A(m) = a(m) ecicni2) m, B(m) = b(m) eCinm, 

whence (2.5a), (2Sb) become 

a(m + 1) - 2a(m) + a(m - 1) = 2(a - 1) u(m) + T u*(m) b(m), 

b(m + 1) - b(m - 1) = $ iy(u*(m) - u*‘(m)). 

(2.6a) 

(2.6b) 

Note that the necessary linear stability criterion a < 1 for the scheme is contained in 
(2.6). However, when the nonlinear terms are included, Eqs. (2.6) can exhibit 
unbounded growth even when a < 1 provided the initial disturbance is sufficiently 
large. 

The amplitude equations (2Sa), (2.5b) are very revealing and deserve careful 
analysis. First notice that the A *B term which appears in the ?r/2 mode equation 
(2.5a) represents an interaction between the 7c mode and the 7c/2 mode. This is 
precisely the nonlinear interaction due to aliasing error identified by Phillips (see also 
the discussion in Mesinger and Arakawa [6]). The result of this interaction is the 
production of a 37c/2 mode which is resolved by the system as contributing to the 
change in A *, the amplitude connected with the -7r/2 mode. Indeed, it is precisely 
because of aliasing error that an exact closure of the amplitude equations is achieved. 
In Phillips’ example, the equations equivalent to (2.5) would have a = 0 in (2.5a) and 
no right-hand side in (2.5b). In his case, he would allow a solution in which 
B(m) eeinm has the same sign at successive time steps. This leads to immediate 
exponential growth. On the other hand, if this quantity has opposite signs at 
successive m, a certain amplitude threshold is required in order to initiate the 
instability. It is the latter case which our situation parallels. 

Equations (2.5a), (2.5b) also show clearly the role which the computational mode 
plays in the development of finite amplitude instability. Assume that initially the 
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amplitudes A(m) and B(m) are small, in which case the linear portions of (2Sa), 
(2.5b) will determine their growth. We then have 

~(~)=~,~-imo~ +Ace-im2=Ape-iml +A,(-lye+imrI, 

B(m) = B,(-l)m + B,, 

where 4, and #z = z - 4, are given by the linear dispersion relation, A, and B, are 
coefficients of the physical mode, and A, and B, are coeffkients of the computational 
mode. The linear solution given above will begin to contribute to the right-hand side 
of the B equation (2.5b) in the following way: 

B(m+ I)-B(m- 1)=-~iy(Af-A~2)e2imm-~iy(A~-,4A,*2)e-2i”” 

+ DYE Im(A,A,). 

The third term of the right-hand side is a homogeneous solution and hence gives rise 
to a resonant solution. We find that 

B(m) = (homogeneous solutions} + ae*““@ + bepZimm - 3 y Iy(A,A,:)(-l)mm, 

where a, b are constant independent of m. The nonlinear term of the right-hand side 
of the A equation (2.5a) will now reflect this growth in B(m), 

A*(m)B(m)=eim”(-~yIm(A,A,)A~m+bA,*+A,*B,+A,*B,(-l)“} 

+eim”(-~~Im(A,A,)A~m +uAF +A,*B,+A,*B,(-l)“} 

+ higher harmonics. 

We see that A(m) is driven by terms which grow linearly in m and which involve the 
computational mode of A(m) itself. This interaction triggers the finite amplitude 
instability. When the A*(m) B(m) term overcomes the linear (restoring) term, rapid 
growth of the solution sets in. Analogous arguments could also be carried out in the 
three and four mode amplitude equations. 

We compute the nonlinear stability threshold as follows: Let 

~(0, n) = u( 1, n) = a( (1 + i) eicn’*)” + (*) + einn}, 

and with the initial conditions A (0) = A (1) = a( 1 + i), B(0) = B( 1) = o compute 
solutions for (2.5). Note that the total amplitude is given by 

In Figs. la, b we show the regions of the (a, E) plane which correspond to bounded 
(for 2 X lo4 time steps, the solution oscillates) and unbounded (usually overflow 
occurs in less than 10’ time steps) solutions. The transition in the (a, E) plane from 
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FIG. lb. Enlargement of (a, E) parameter plane for two mode solution: (.), stable solution to 
2 x lo4 time steps; ( x ), unstable solution. 

bounded to unbounded solutions is not smooth. Given recent experience with 
mappings, it is not surprising that the boundary is irregular and that the domains of 
attraction of the bounded and unbounded solutions are interspersed. We stress, 
however, that when we examine the stabi!ity of solutions in Section 3, we begin with 
initial conditions which belong to the stable region of the amplitude equations. 

In Fig. la, we draw smooth curves to indicate roughly where the boundary lies. In 
Fig. lb, we give a more detailed picture of the (a, E) plane in the case of two modes 
(Eqs. (2.5)). The dots correspond to initial values of a and E for which the solution 
remains stable for 2 X lo4 time steps; the crosses indicate values for which the 
solutions rapidly (in less than lo2 steps) blow up. 

Part of this behavior is due to the fact that the initial phase (which we have chosen 
to be fixed) is also important in determining the final disposition of the solution. Our 
choice of weighting the three modes e*inni2, einn equally does not significantly affect 
the average position of the stability boundary nor the qualitative features of Fig. lb. 
It does change quantitatively the complicated patterns seen near the boundary, and it 
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does change the actual number of steps needed to reach instability. We confirmed this 
by choosing different weightings while keeping the “energy” 

k u(O,n)u(l,n)=N(A(O)A*(1)+A*(O)A(1)+B(O)B(l)) 
ll=l 

fixed. 
The curves in Fig. la can be considered to be representative. It is interesting to note 
that the stability boundary reaches a maximum at approximately a = 0.5 and then 
returns to E = 0 at a = 0. Recall that since we keep y fixed (equal to one) in these 
experiments, a getting smaller means that the size of the solution U about which we 
perturb is getting smaller. One might argue from (2.6a) that the smaller a is, the 
larger is the linear restoring force which the nonlinearity must overcome. However, 
this thinking is really only of value when a is close to one and we can take the 
continuous time limit of (2.6). It is better to consider Eqs. (2.5). If we write 
A(m)=x,+iy,,B(m)=b,, then (2.5a) reads for a=O, y= 1, 

X ml+, =-x,-I - 3 b,y,,,, 

Y mt, =Y,-, - %nx,i,, 

which if x0 = y,, xi =yi allows the solution x, =y, for all m; thus 

b mtl =b m-, + $1, 

and therefore always increases. This result is not significantly affected by a change of 
initial conditions. For example, if the energy is redistributed in a different manner 
among x,,, xi, y,, y, , b,, b, the stability threshold at a = 0 can increase to as much as 
f0.05. Thus the role of a, for a small, is to dephase x, and y, which inhibits the 
monotonic growth of b,. 

Similar comments apply to the other stability curves of Fig. la which are 
calculated by solving the initial value problem for the ordinary difference equations 
(2.7), (2.9), describing three and four mode behavior respectively. The reason that the 
stability boundary for the three mode solution touches E = 0 at a = 1 is that, at this 
value of a, the solution A(m) = exp(-27rim)/3, B(m) = exp(-zim), corresponding to 
the undistorted travelling wave, exactly cancels the linear terms in the equation. Thus 
the nonlinearity has no linear restoring force to overcome. 

C. Three Mode Solution 

The 2~/3 (period 3) mode can also appear as a solution with the K (period 2) and 
743 (period 6) modes. A solution of the form 

U(m, n) = A(m) ei(n/3)n + B(m) ei(zn/3)” + C(m) einn + (*) (2.7) 
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is an exact solution of the full partial difference equations provided the amplitudes 
satisfy 

A(m+ l)-A(m- 1)+~(A*B+B*(C+C*)),+iaJ5A(m)=o, 
fi 

B(m+ 1)-B(m-1)+_f2i(244~+A*(C+C*)),+iaJ3B(m)=0, 
d 

C(m+ I)-C(m- 1)+‘2’A(m)B(m)=O. 
\/3 

(2.8) 

Once again a stability curve relating a to the critical value of the initial amplitude 
has been determined experimentally. This curve is also shown in Fig. la, for the case 
A(O)=A(l)=B(O)=B(l)=a(l +i), C(O)=C(l)=a. Now E=maxO,.,.,,,,,, 
lu(m, n)l= 5a. 

D. Four Mode Solution 

An exact solution to the full partial difference equations consisting of four linear 
modes takes the form 

u(m, n) = A(m) ei(n’4)n + B(m) e”“‘*‘” + C(m) ei(3n’4)n + D(m) einn + (*). (2.9) 

The amplitudes must satisfy the ordinary difference equations 

A(m+ 1)-A(m-1)fiy 
I 
f(2+J2)A*B+ (3 ) 2-Jr B*C+ +*Dlm 

+ia\/ZA(m)=O, 

+ 2iaB(m) = 0, 

C(m+ I)-C(m- I)+iy 
[ 
+,. (~+Ji)asif(Ji-Z)B*c*~~ 

+ ia fiC(m)=O, 

D(m+ 1)-D(m- l)+iyj(&AC+B*),=O. (2.10) 

The stability curve determined from these amplitude equations is also shown in 
Fig. la for the case A(O)=A(l)=B(O)=B(l)=C(O)=C(l)=o(l ti). 
D(O)=D(l)=a. Now E=maxo(.~,,,=o~,Iu(m,n)(=7a. 
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III. FOCUSING IN THE PARTIAL DIFFERENCE EQUATIONS 

The calculations of the previous section provide the regions of stability for exact 
solutions to the full partial difference equations. However, these stability curves were 
determined, not from the full partial difference equations, but rather from a set of 
ordinary difference equations that govern the amplitudes of various Fourier modes. 
We now return to the partial difference equations for a numerical experiment that can 
be thought of as a verification of the stability results of the previous section, In all 
cases, we will begin from initial conditions which give rise to stable solutions of the 
ordinary difference equations (2.5) and (2.8). 

Consider the specific case of the exact three mode solution 

u(m, n) = A(m) ei(n’3)n + B(m) ei(2n’3)n + C(m) einn + (*). 

06- 

04- 02------------ _--- ----------- 
o-~ -0,2--------- ___- -----__---_-- 

-0.4- 

06 1 

06 

FIG. 2. Solution to the partial difference equations: 3 modes, N = 300, a = 0.9, E = 0. I. m = 4tl0, 
1000, 2000, 2200, 2400, 2680. 
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According to the stability curve of Fig. la, a value of a = 0.9 and an initial amplitude 
of E = 0.1 should produce a stable solution of the amplitude equations. Yet when the 
partial difference equations are solved with a = 0.9 and E = 0.1, something unex- 
pected happens. The results of this calculation are shown in Fig. 2. With N = 300 
grid points on the interval 0 <x ,< 1, the solution is plotted at time steps m = 400, 
1000, 2000, 2200, 2400, 2680. The dashed lines indicate the critical amplitude at 
which finite amplitude instability sets in according to the stability curve of Figs la, b. 
(In this case, the critical amplitude is about 0.2.) Clearly, the initial amplitude in this 
case is subcritical. At m = 400 and m = 1000 (Figs. 2a, b), the solution still retains 
the periodic structure of the initial conditions; its amplitude is well below critical 
everywhere. By m = 2000 (Fig. 2c), the constant envelope of the initial profile begins 
to vary slowly in x. The solution remains well contained through m = 2400 (Fig. 2e), 
although local amplitudes have exceeded their initial value. At m = 2680 (Fig. 2f) the 
solution exceeds the threshold value at a single grid point. This completes the first 
stage of the development of the instability. It is characterized by the slow gathering 
or focusing of the solution locally. Once the solution reaches the critical threshold at 
even a single grid point, the second stage of the development takes place swiftly. By 
m = 2700, finite amplitude instability, as predicted by the amplitude equations, has 
taken over and the solution grows without bound. During the integration, the two 
quantities Cn u(m, n) and C,, u(m + l), n) u(m, n) are conserved exactly. 

Some understanding of this process may be gained by looking at the Fourier 
spectrum of the solution at the same time steps shown in Fig. 2. On a grid of 
N = 300 points, there are 150 distinct modes with mode j of the form ei(“i”so’ having 
wavelength of (300/j) h. After m = 1000 time steps (Fig. 3a) the energy is still in the 
three modes of the initial conditions. By m = 2000 time sjeps (Fig. 3b) the energy has 

LL 
50 100 150 50 100 150 

45 55 95 105 145 

a. b. 

C. d. 

FIG. 3. Spectral resolution of (a) ~(1000, n), (b) ~(2000, n), (c) ~(2200, n), (d) ~(2400, n), of Fig. 2. 
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spread to the sidebands with wavenumbers ,u = 45,55, ,u = 95, 105, and ,u = 145 
@ = 50 is the period 6 or 7q’3 mode). This corresponds to an envelope modulation of 
wavelength 300/5 = 60, and the constant envelope of the initial profile begins to vary 
slowly in x. In short, the exact solutions of the amplitude equations are unstable 
solutions of the full partial difference equations. This is the beginning of the focusing 
process. The slow modulation of the envelope is triggered only by the presence of 
errors, either in the initial conditions or in computation. Figure 3c at m = 2200 time 
steps shows a further spreading of the energy in wave number space corresponding to 
a continued enhancement of the modulation in the envelope. During time steps 
m > 2400 (Fig. 3d), the energy is distributed through all wavenumbers, approaching a 
uniform distribution. In physical space, this corresponds to the envelope of the 

FIG. 4. Solution to partial difference equations: 2 modes, N = 300, a = 0.9, E = 0.15, m = 100, 400. 
450, 500, 800, 850. 
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solution having focused into a local peak with subcritical amplitude. Once focusing 
elevates the maximum amplitude above the threshold, finite amplitude instability sets 
in, leading to a rapid deterioration of the solution. 

We point out again that the initial conditions for this experiment correspond to an 
exact and bounded solution of the full partial difference equations. The focusing 
mechanism feeds on errors in the calculations and magnifies them at a level which is 
subcritical even for finite amplitude (nonlinear) instability. The effect of focusing can 
be accelerated by adding small perturbations to the initial conditions. It can be 
delayed by doing the calculation in higher precision. 

Figure 4 shows another sequence of experimental results. We choose initial 
conditions consisting of the n/2 and rc modes and N, the number of grid points, is 
300. With a = 0.9, the critical amplitude (by Figs. a, b) is E, = 0.36 and’ is marked 
by a dashed line in the figures. For these calculations, an initial amplitude of 
E = 0.15 was chosen. For early times, the envelope oscillates in a manner almost 

+ II I I II III I 
75 e. 150 

4 

FIG. 5. Spectral resolution of solutions of Fig. 4 at m = 0, 100, 400, 450, 500, 550, respectively, 
(aHO 
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independent of x and in precise agreement with the motion predicted by Eqs. (2.5a). 
(2Sb). One can think of the system as consisting of a chain of coupled oscillators in 
a nonlinear potential. For early times, their orbits are almost synchronized, However, 
a careful analysis of the spectrum reveals that the envelope has begun to deform and 
one can already see the long wave modulation at times m = 100, 400 (Figs. 4a, b). 
The spectral decompositions of ~(100, n) (Fig. 5b) shows that the sidebands k = 72. 
78 (k = 75 is the period 4 or rc/2 mode) are excited. This corresponds to an envelope 
modulation of wavelength 300/3 = 100. This wavelength is chosen dynamically, and 
is a function of the initial amplitude but not of N, the number of grid points. This fact 
was verified by taking values of N ranging from 60 to 600. The fact that there is a 
most unstable sideband, and that the wavelength of the most unstable mode is 
inversely proportional to the initial amplitude, is consistent with parallel theories of 
modulation instabilities 18, 111. Returning to the experiment shown in Fig. 4, we note 
that by m = 400, the deformation of the envelope into a wave of wavelength 100 is 
clear to the eye, although by this step some energy has also been transferred to the 
sidebands k = 71 and 79 (Fig. 5~). By m = 800 (Fig. 4e), the envelope has deformed 
so that in several locations it is about to exceed the critical threshold. Within fifty 
more time steps (Fig. 4f), the solution becomes rapidly unbounded. Note that the 
maximum negative peak (Figs. 4e, f) travels with a speed of almost one consistent 
with the envelope description discussed in the next section. 

An important question is whether the behavior observed in these two experiments 
is inherent in the difference equations themselves or whether it can be attributed to 
finite precision arithmetic. To address this question, the growth rate of the instability 
was measured for various cases in both single and double precision. One measure of 
growth rate was obtained by monitoring the quantity 

where u is the solution of the full partial difference equation and u” is the solution of 
the partial difference equation as reconstructed from the solution of the amplitude 
equations. The quantity e, measures the deviation of the exact solution (z?) from the 
destabilized solution (u) (assuming the same initial conditions) and thus gives an 
indication of the rate at which the instability is developing. Figures 6a, b show plots 
of m vs e,(m) for a single and a double precision calculation on a grid of N = 240 
with two mode (n/2, rc) initial ,conditions. The average growth rates, as determined 
from each curve’s interval of uniform growth, are essentially identical. A similar run 
with N = 300 in single and double precision also yields the same growth rate. A 
second quantity 

ez(m) = max max u(m, n) - min max u(m, n) 
1 n I ! n i 

measures the rate at which the amplitude of the envelope modulation grows. When 
this quantity is monitored, a growth rate is obtained which not only agrees in single 
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0 200 400 600 600 1000 

FIG. 6. Growth rate curves. Single (a) and double (b) precision, N = 240. 

and double precision, but also agrees with the growth rate obtained from e, . It seems 
reasonable to conclude that the mechanism which is responsible for focusing resides 
in the difference equations and is not an artifact of finite precision arithmetic. 

IV. ENVELOPE DESCRIPTION 

Since the instability which leads to focusing involves wave numbers in the 
immediate neighborhood of the primary modes, it is natural to seek an envelope 
description of the process. We carry out this analysis for the situation in which the 
energy is initially in the 742 and x modes. In (2.6) let the amplitudes a(m, n), b(m, n) 
be slowly varying functions of both the time and space variable. When substituted 
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into the full partial difference 
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amplitude a(m, n) itself. The advantage of Eqs. (4.1) is that they are universal and 
will apply to a broad class of partial difference equations. In addition, the envelope 
equations (4.1) are a better representation of the full partial difference equations (2.1) 
than the amplitude equations (2.6). Certainly they contain the amplitude equations. 
They are also a valid approximation to the full partial difference equations at least 
for early times as, in the initial steps of growth of the envelope instability, the 
criterion that a(m, n + 1) - a(m, n - 1) is small with respect to a(m, n) is well 
satisfied. 

In Fig. 7, we show the result of comparing u(m, n) as calculated from (2.1) and as 
constructed from a solution of the envelope equations (4.1). The initial conditions 
consist of the 7c/2 and 7c modes only with an amplitude E = 0.15 modulated by a long 
wave perturbation with an amplitude of 0.05E. The parameter values a = 0.9 and 
N = 60 grid points are used. For m < 200 (Figs. 7a, b) the two computations produce 
identical results. When m > 300 (Fig. 7c) the approximations used to derive the 
envelope equations cease to be valid. For example, a universal term, such as 
2a*(m, n) b(m, n), no longer represents a*(~, n + 1) b(m, n + 1) + a*(m, n - 1) 
b(m, n - l), a term which is peculiar to the particular partial difference equation 
under study. Nevertheless, the envelope equations do exhibit the focusing property 
and display qualitatively similar behavior to the full difference equations even though, 
in this computation, the critical threshold is reached much sooner (at m = 650) by 
the envelope equations. The full difference equations exhibit focusing behavior which 
reaches the critical threshold at about m = 1800 time steps. 

V. CONCLUSIONS AND CONJECTURES 

The results of the previous sections were obtained in a purely experimental way. 
These experiments provide evidence for the presence of a universal mechanism for 
instability in certain nonlinear difference schemes. We have considered the leapfrog 
scheme which has 

(i) potentially unstable modes which are neutral by linear stability analysis, 

(ii) a subcritical amplitude threshold governing the onset of finite amplitude 
instability, and 

(iii) the focusing property. 

We believe that any difference scheme possessing these properties will be susceptible 
to instability through this mechanism. Of these three properties, the focusing 
mechanism is the most difficult to predict. One necessary criterion for focusing is that 
the envelope equations (4.1) possess n-independent solutions which are always 
unstable. Although certainly accessible, an analytic result to this effect has not been 
proved, but, to date, experimental evidence strongly suggests that this instability is 
always present. A second, more difficult, question is whether the focusing envelope 
always attains the critical threshold. In order to gain some insight into this question, 
we plot in Figs. 8 and 9 the number of time steps needed for the critical threshold to 



102 BRIGGS, NEWELL, AND SARIE 

A 
M 

5- 

4- 

x I03 
3- 

2- 

I- 

60 120 180 240 300 
5, 

N 

FIG. 8. Number of grid points (N) vs number of time steps to critical threshold (M): 2 modes, 
u=O.9, various E=(I) 0.3, (2) 0.27, (3) 0.21, (4) 0.18, (5) 0.15. 

be reached (M) as a function of the number of spatial grid points (N). The different 
curves are parameterized by E, the amplitude of the solution from which the envelope 
starts to deform. Figure 8 refers to the case of two mode (42,rc) initial conditions in 
which, with (r = 0.9, the critical amplitude is E, = 0.36. Figur: 9 refers to the case of 
three mode (743, 2rr/3, n) initial conditions in which, with (Y = 0.9, the critical 
amplitude is E, = 0.15. These results also exhibit some interesting features. 
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FIG. 9. Number of grid points (A’) vs number of time steps to critical threshold (M): 3 modes. 
u = 0.9, various E = (1) 0.14, (2) 0.12, (3) 0.1, (4) 0.09, (5) 0.106, (6) 0.05. 
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FIG. 10. In (In N) vs In(E), a =0.9. 3 modes for M= 2000, 3000, 6000 

(i) The closer E is to its critical value E,, the larger is the range for which M 
is independent of N. The fact that these curves are asymptotic at nonzero values of M 
reflects the fact that the time for the perturbation to reach an amplitude of E, - E 
depends on the size of the initial fluctuations and the growth rate of the envelope 
instability. 

(ii) The smaller E is, the larger N must be in order for the envelope to attain the 
critical threshold. From the data on Fig. 9, we plot in Fig. 10 In E vs In (In N) for 
fixed M, the number of time steps needed for the envelope to attain the critical 
threshold. The straight lines indicate that E In N is constant for fixed M and 
furthermore we note that even then E In N is only weakly dependent on M. Thus it is 
not simply the amplitude which determines the ultimate fate of the solution. Rather, 
the critical parameter appears to be a global quantity which measures a weighted 
average of the original perturbations. It should be pointed out once again that these 
results are sensitive to the choice of initial conditions. Figures 8-10 show the 
situation in which all components of all modes are given equal weight in the initial 
conditions. It is expected that a different weighting would give qualitatively similar, 
but quantitatively different, pictures. Since in a typical calculation initial errors are 
distributed fairly randomly, it would be difficult to use the curves of Figs. 8-10 to 
predict the number of steps needed to reach the threshold. 

This raises the question of how instability due to focusing can be avoided. In 
Section 2 an argument was given to show the role of the computational mode in the 
onset of finite amplitude instability. It appears that the presence of spurious, neutral 
modes also contributes to the focusing mechanism. A number of strategies have been 
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developed to eliminate the computational mode from calculations that use 
nondissipative schemes. Among these strategies we tested the following and reached 
some conclusions. 

(i) Averaging the solution on two consecutive time levels at regular intervals 
effectively eliminates the development of envelope instability and keeps the solution 
intact for any number of time steps. However, averaging amounts to a nonphysical 
“time” step and, not surprisingly, the conservation of quantities such as M and E is 
badly violated. 

(ii) Periodic restarts or insertion of a step with a two-level scheme also 
appears to suppress the focusing mechanism, but has a negligible effect on the 
conserved quantities. To show the effectiveness of this strategy the case of Fig. 4 was 
run again, this time with a two-level Matsuno step inserted every 200 time steps. 
After 420 time steps, when the original (nonrestarted) solution was showing 
noticeable modulation of the envelope, the restarted solution still shows a uniform 
envelope over a perfectly periodic wave. After 880 time steps, when the original 
solution has become unbounded, the restarted solution still has a uniform envelope. 

a ---------------------------------- 

b -------------------------------- 

FIG. 11. The effect of one Matsuno step. N = 300, a = 0.9, m = 853, 855, respectively, (a), (b). 
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In this case with a forward time step taken every 200 time steps, any growth that 
has begun in the envelope is small enough that it can be eliminated by the damping in 
one Matsuno step. On the other hand, if a forward step is taken less frequently, then 
the buckling and growth of the envelope has enough time to develop and one 
Matsuno step will not restore the uniform envelope. This latter situation is illustrated 
in Fig. 11: (a) shows a well-developed envelope wave over a grid of N = 300 after 
m = 853 time steps; (b) shows the solution one step after a Matsuno step. The effect 
of the forward step is to reduce the amplitude of the solution uniformly over the grid. 
One local peak which has reached the critical threshold has been reduced to about 
75% of its value. 

It is difficult to determine how much of that reduction is due to the damping of the 
Matsuno step. Some portion of it is due to the inherent oscillation of the envelope. A 
careful look at the spectrum shows that the energy has been reduced fairly uniformly 
across all the modes in contrast to the linear case in which the damping is strongest 
for the high wavenumbers. This particular integration which would have terminated a 
few steps after m = 855 without the forward step continues for several hundred 
additional steps. 

It would be useful to derive a rough prescription for the frequency with which 
forward steps should be inserted. There are some assumptions in such a calculation 
which may mitigate its usefulness as a general result, but it does show that damping 
and envelope growth can be made to compensate each other in an effective way. The 
growth rate of the focusing instability can be estimated either from Fig. 6 or from the 
flat portions (N > 200) of the curves in Fig. 8. At the same time a linear analysis 
gives the amount of damping associated with one Matsuno step. For example, the 
most highly damped mode (7~/2 mode) is damped by a factor of 0.92 when a = 0.9. 
Assuming a constant exponential growth of the envelope, it is possible to determine 
how often a forward step should be inserted to exactly cancel the growth of the 
envelope. With N = 300, such a calculation yields a frequency of 400 time steps 
which agrees well with empirically determined strategies. This calculation is certainly 
oversimplified. The growth rate is not uniform and is somewhat amplitude dependent. 
Furthermore, the linear estimate of the damping factor is not exactly correct, 
especially in the later stages of the computation. Nevertheless, the argument does 
explain qualitatively the success of a forward step in inhibiting the instability. 

(iii) For smooth solutions, periodic Jiltering on high wavenumbers has been 
used successfully to suppress instability. This has not been tried in the present one- 
dimensional runs (in which the solutions are far from smooth). We would expect 
filtering to be effective in suppressing focusing which feeds preferentially on the high 
wavenumbers. At the same time filtering could have an undesirable effect on the 
budget of conserved quantities. 

The qualitative similarity between all of the features reported above and the 
properties of focusing envelopes of partial differential equations leads us to conjecture 
that the strength of the focusing mechanism increases with the dimension of the 
problem. Indeed, preliminary calculations with analogous two-dimensional equations 
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have borne out this conclusion. We expect that this two step instability process will 
be potentially present in all large scale computations. Our goal, in this and future 
work, is to understand the nature of the breakdown of numerical algorithms to the 
point that we can (a) appreciate why certain ad hoc instability inhibitors (such as 
filtering and the introduction of artificial viscosity) work and (b) to devise new and 
more enlightened ways to control instabilities without sacrificing accuracy. 
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